
Bridge Controller: Guarded Actions of "new" Events in 1st Refinement

IL_in: A car enters island (getting off the bridge).

IL_in
when
??
then
??
end

IL_out: A car exits island (getting on the bridge).

IL_out
when
??
then
??
end

Before-After Predicates of Event Actions: 1st Refinement

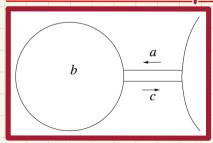
IL_in

when

a > 0

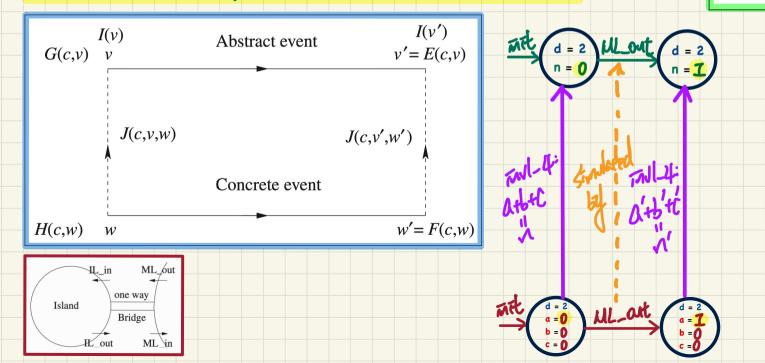
then

a := a - 1


b := b + 1

end

IL_out **when** b>0 a=0 **then** b:=b-1 c:=c+1 **end**



Visualizing Invariant Preservation in Refinement

Each new state transition (from w to w')
should be simulated by
an abstract dummy state transition (from v to v')

skip begin end

PO/VC Rule of Invariant Preservation: Sequents

axioms: axm $0.1:d\in\mathbb{N}$ axm0 2: d > 0 invariants:

inv $0.1:n\in\mathbb{N}$ $inv0_2 : n \le d$

II in

A(c)I(c, v)J(c, v, w) $H(c, \mathbf{w})$ $J_i(c, E(c, \mathbf{v}), F(c, \mathbf{w}))$

> IL out when

Concrete m1

invariants: inv1 1: $a \in \mathbb{N}$ inv1 2: $b \in \mathbb{N}$ inv1 3: $c \in \mathbb{N}$

variables: a, b, c

then a := a - 1b := b + 1 $inv1_4: a+b+c=n$ end **inv1_5**: $a = 0 \lor c = 0$

when a > 0

b > 0a = 0then b := b - 1c := c + 1end

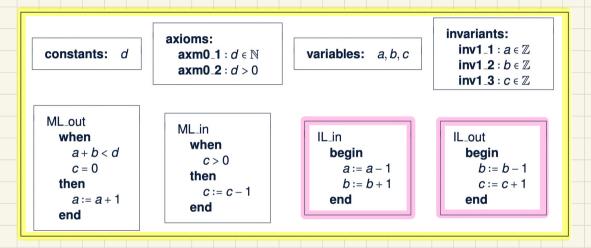
IL_in/INV1_5/INV

Q. How many PO/VC rules for model m1?

Discharging POs of m1: Invariant Preservation in Refinement

IL_in/inv1_4/INV

 $d \in \mathbb{N}$ d > 0 $n \in \mathbb{N}$ $n \leq d$ $a \in \mathbb{N}$ $b \in \mathbb{N}$ $c \in \mathbb{N}$ a+b+c=n $a = 0 \lor c = 0$ a > 0(a-1)+(b+1)+c=n


$$\frac{H1 \vdash G}{H1, H2 \vdash G} \quad MON \qquad H, P \vdash P \qquad HYP$$

Discharging POs of m1: Invariant Preservation in Refinement

Livelock Caused by New Events Diverging

An alternative m1 (for demonstration)

